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The simplest way to obtain a theory with a spontancous symmetry breakdown (1)
is to impose the broken-symmetry condition (*)

(1) COlg, ()]0 £ 0,

where g, () is a scalar boson field (either a basic field or a more complicated construet
such as ¢/, w for instance) transforming according to an internal-symmetry group
which leaves the equations of motion and commutation relations of the theory invariant.
Most known examples (*%) of spontaneously broken symmetfries satisfy condition (1).
In a theory with local commutation relations, where eq. (1) holds, Goldstone’s theorem
assumes us that zero-mass bosons will be present.
The question naturally arises whether a broken-symuetry eondition analogous
to (1) might be imposed on a fermion field

2) Oy, @0y # 0.

This is of some interest in connection with the possibility of obfaining Goldstone
fermions (ef. discussion following ref. (7)), and one immediately realizes that it could
only be done at the expense of breaking the explicit Lorentz invariance of the theory.
Since the possibility exists that as far as observables are concerned Lorentz invariance
would still hold, as for instance in electrodynamics, in radiation gauge and in the
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Bjorken (°) and Guralnik and Hagen (*) models, possible applications of the broken-
symmetry condition (2) are not a prieri destroyed by the breakdown of explicit Lorentz
invariance.

Besides the trouble with Lorentz invariance, which happens with a broken-symmetry
condition for any field with spin larger than zero, for fermion fields an additional com-
plication oceurs, since (2) will be shown incompatible with a positive definite metrie
in the Hilbert space.

In fact consider

(3) Ol w.(y)|0y = |0

w032+ [<lwa |02 exp [ip,(x — y)] +
F

4.—J‘e{p; expip(x — y))d%p ,
where [0, [j> are discrete eigenstates of the momentum operator

(4) Ploy=0,  Pii>=pili>

and the integral deseribes the econtribution from the continuum of states. Tor

x — |- oo this integral docs not confribute beeanse of the Riemann-Lebesgue lemma
and using anticommutation relations one finds

(3) 0= 1.-.l_i\-’;'im 0|l i), valy)]0y =

|%—y|—>

lim {2|<0_w.xju>{* 3]G, 00]2 exp ipya — 331 -+ |<i]wd|03]2 exp [—ip (x- y)J}-

The r.he of eq. (5) can only vanish assimptotically if
(6) 0,00 =0 Glwalo> =0, lwh oy =0

and thus the broken-symmetry condition (2) eannot hold.
The only ezeape from (6} is to use an indefinite metrie whereupon the coefficients of
the expouentialg in (5) may no longer he positive definite and cancellations can occur.
It is interesting to note that in one of the models studied in (*) a broken-symmetry
condition (2) was introduced by the formal construction of a field

(7) vie) = U p(z) U YA),

with U(A) formally a unitary operator

(8) U(2)= vxp l?-(— 19 | (') + vliy) asy]

)

and y(x) a free zero-mass Dirac field.

% J. D, BijorkeN: Ann. of Phys,, 28, 174 (1863).
) (i, 5. GURALNIK and ¢, R, Haaex: Formal breakdown of Lorents invariance in Lwo-idimenstomal
field theories (preprint),
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The transformed field p*(x) formally satisfies the Dirac equation with zero mass
and eanonical anticommutation relations.
By looking only at the infinitesimal transformations

(9) y¥(x) = pla) + 0A(—1)Y
with
(10} CO]y?Ha)|0% = Sd== 0

one might be led to the erroneous conelusion that a fermion field satisfying eq. (2)
may exist in a Hilbert space with positive metrie (*).

The finite transformation however, computed at first for a finite quantization
volume V. reads

— 1"
(11)  yHe) = p(@) + —=gin (V2V ) + ply))
Va7 gin (V2T 4) Ef(w () + wiy))dy

F

cos (\_ZT' )—1

Vv )

which becomes rather meaningless in the limit ‘of infinite volume and understood as
a weak limit leads to the identity transformation

(12) Lim <plp*@)| 2> = {olv@)z
for [p>, |x> out of a dense set of states in the Hilbert space. Thug the construetion (7)
does not lead to the condition (2) in agreement with our result (6) ().

By relaxing the requirement on the positive-definiteness of the metric one can easily
build a free zero-mass field satisfying eq. (2). Define

(13) yA(#) = pa (@) + Anyla + b) {nin, =1},

where w, () is the nsual zero-mass free Dirac ficld and a, b annihilation operators
satistying

(14) [, vy): = [a', w1, = (@ o b) = [a, b], = [a*. b], = [a, "), = O
and

(15a) [@,a'],= 1,

(15b) . 5", =—1.

The indefinite metrie iz introduced through relation (156).
Defining the vaenum state 03 as

(16) [0y = (|25 + a’| )/

where |25 is the no-particle vacuum, we notice that:

(*) 1 am informed by Dr, C, R, HageEy that the authors of (*) knew of the necessity of employing
an indefinite metrie in their construction although it is not mentioned in their paper,

(**) For free flelds this is also a consequence of Doplicher's (*°) result, The Foek representation is
the only representation with a vaenum for a free massless Dirae field (in a Hilbert space with positive
metric and spectrum condition).

(%) 8. Dopricasr: Comm. Maih., Phys., 3, 225 (1966},
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a) ywi(x) satisfies the free Dirac equation with zero mass and canonical anti-
commutation relations.

b) The vacuum state [0 is an eigenstate of the energy-momentum operator
with zero eigenvalue.

¢) The vacuum expectation value of w_‘:‘(;c) is not zero

) Rl n,
(17) Olpiz)|0y = —.

2

d) The Hilbert space generated by the application of polynomials in p# and %
on the vacuwm is

(18) H=HrRH DKy,

where #'p is the Fock space, #7, the usual two-dimensional space and #, a two-
dimensional space endowed with indefinite metric whose basis veetors |25 and b2
satisfy

(19} Q2> =1

¢) The algebra of field operators is reducible since there are operators
(— 1) (a+ b), (—1)*(a® = b") which commute with all the field operators and are not
multiples of the identity. Hence one has a theory with many vacuna (11):

@, &2, e, e&le.

Due to the indefinite metrie, it is not possible to reduce out completely the repre-
sentation so as to have a theory with a unique vacunm and a broken-symmetry condition.
This is a general feature as easily =een from eq. (3).

We have thus seen that the broken-symmetry condition for a fermion ficld (eq. (2))
is possible only at expense of introducing indefinite metric in the Hilbert space. It is
clear that the same also holds for a broken-symmetry condition involving an odd number
of fermion fields.

In order to have a reasonable theory based on (2) one has to ensure that:

A) Lorventz invariance is maintained as far as observables are concerned although
it is broken for the fermion field.

B) The negative-norm states must not manifest themselves in  observable
quantities.

To satisfy 4) and B) one expeets a theory to have an algebra of observables much
smaller than the algebra of field operators meaning some sort of a ver. large gange
group like for instance in quanium electrodynamiecs.

A trivial example satisfying A1) and B) is the free field studied above with a suitable

(*') R. Hasg: Nuovo Cimento, 25, 237 (1962).
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definition of observables as being generated hy

oA (x') A3
pi@) — Jim f p ) vta)

F—rm T
7

A more complicated example is the model recently studied by GurarxiE and
Hacen (*) of spontaneons breakdown of Lorentz invarianee in a two-dimensional
theory of fermions interacting with vecfor mesons,

By working in terms of Green funetions the strueture of the underlying Hilbert
gpace is not immediately explicit and the authors do not stress the appearance of
an indefinite metric.

They obtain a broken symmetry by imposing

(20) C0[ji() [0y = &= 0

(with j# a current), which appeais as a consequence of choosing a free Green function
for the fermion field

(21) Gylx) = Gy(@) +

with 3 a constant matrix and &, the usual free Green funetion for a Dirac field with
zero mass (%), Equation (21) implies

(22) Ows|0># 0,

which is thus the basie broken-svmmetry condition of their model from which (20)
is a econsequence, implying indefinite metrie (**).

The exact solution of the model given in (%) indicates that by an appropriate defini-
tion of observables the theory is reduced to one without a broken-symmetry condition,
which is then physically irrelevant, as in our previous example.

The problem of obtaining a model with a nontrivial fermion broken-symmetry
condition satisfying ) and B) is an open one, and certainly a more diffienlt one than
the corresponding still not completely solved problem for a boson broken-symmetry
condition.

(") Clearly edq. (20) eould be also obtained by leaving unchanged the Green function and making
the replacement M= — &* hut this would correspond to an external rather than spontaneons symmetry
breakdown.

(**) This is the reason for the difference of results obtained in the Thirring model by GURALNIK and
HAGEN (*) and LEUTWYLER ('*). The first two use the indefinite metrie, the other not.

(**) H. LEUTWYLER: Heir, Phys. Acle, 38, 431 (1985).



